
SOLUTION OF A DIRICHLET PROBLEM IN A CRESCENT-SHAPED DOMAIN 

V. I. Vlasov UDC 517.9 

We present a solution of a Dirichlet problem for the Laplace equation in a crescent- 
shaped domain and apply this solution to some stationary problems of heat conduction, 
electrostatics, and the theory of elasticity. 

i. Let g (Fig. I) be a crescent-shaped domain in the complex w plane: 

g = {w:lwl<R; Iw-O~l>n},  

sin 13s~ 
sin c,r~ 2 

0 1 = - - R  ,~I=R 
sin w sin v~- 

It is uniquely defined by the parameters RE(O, ~), BE(I, 

2 

3g consists of two components, namely, the circular arcs y and P: 

= {w : w = O~ § ~le "a,  q)~ E [ - -  v~, vN}, 

F = { w : w = R e  i~, ~pE[ 
[~  [s~ ] 
2 ' 2 

(1) 

Its boundary 

(2) 

(3) 

which are joined at the points B and C: 

(4) 

To stress the dependence of the domain g on its defining parameters, we write g(R, B, ~). 

Let N be the point of intersection of the arc y with the line {w: Im w = 0}: 

cos ('v + 2=) 
2 

N = R  
COS - -  

2 

(5) 

(NR) = {w Im w = 0, N ~ Re w < R} is a half-open interval of the real axis;int y is the arc 
y minus the endpoints B and C; flof2 is the superposition of the functions f1(f2). 

In the domain g we consider the following Dirichlet problem for the Laplace equation: 

A ,  (w) -- o, wEg ,  (6)  

q~(w) = O, wE int ?, (7)  

, ( w )  = h(c~), Re  ~ = wEF,  (8)  

Computing Center, Academy of Sciences of the USSR, Moscow. 
Fizicheskii Zhurnal, Vol. 50, No. 6, pp. 1024-1031, June, 1986. 
~rch 29, 1985. 

Translated from Inzhenerno- 
Original article submitted 

0022-0841/86/5006-0741512.50 �9 1986 Plenum Publishing Corporation 741 



Fig. i. Crescent-shaped domain. 

Fig. 2. 

o 

/ 19radu~/I 

8 

N-~/'''~' 0 ...... 

/ 
% 

Solution of the Dirichlet problem and its gradient. 

where h(~)EL2( ~2 ' ~)2 " We are required to find a function @(w) in the domain g and 

the quantity grad @(w) on g U int y. Existence and uniqueness of a solution of the problem 
(.6)-(8) follows from [i]. 

A solution of this problem may be found (see Sec. 3) in the following way: with the 
help of a conformal mapping of g onto a semicircle (obtained in Sec. 2), we convert this 
problem into a Dirichlet problem in a semicircle, which we then solve by the method of 
separation of variables; we then return, with the help of the inverse mapping, to the 
domain g to obtain @(w). Numerical results are presented in Sec. 4 for the quantities 
~(w), w ~(NR), and [grad ~(w)[, w ~y. In Sec. 5 we indicate some generalizations of our 
solution, and in Sec. 6 we show its relation to the problem of the torsion of a prismatic 
rod. 

2. We denote by z =~-(w) the conformal mapping of the domain g onto the semicircle 
~'(g).={z:Izl<l, O<Imz}, satisfying the conditions 

(B)=--I, ~(N)=O, ~(C)=1, 
where the points B, N, C are defined by expressions (4) and (5). 

To obtain this mapping, we first map the domain g with the aid of the function 

(9) 

w--C 

onto the angular domain {~:0 < arg~ < ~}, and then, applying a combination of power and 
fractional-linear functions 

(io) 
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~1/2= __ 1 
z ( ~ )  - , ( 1 1 )  .~1/2~ @ 1 

we map the latter onto the semicircle ~-(g). The mapping desired is then 

It possesses the property of symmetry, 
arc 

j (~) = z(~)o~(W). 

sr (~)  = - ~ " ( w ) ,  

(12) 

and maps F into the semicircular 

Y (r)  = (z = e ~~ : 0 C [0, ~]}, 

and maps y into a diameter of the semicircle 

Y ( ? ) -  {z = x +  i y : x E [ - - 1 ,  II, g -  0}, 

f i n a l l y ,  i t  maps t h e  h a l f - o p e n  i n t e r v a l  
o f  t h e  i m a g i n a r y  y a x i s :  

(13) 

(14) 

(NR) of the real u axis into the half-open interval 

Y ((NR)) = {z = x + iy :x  = 0, g16 [0, 1)}. (15) 

The correspondence between the angular coordinate ~i, defining a point of the arc y through 
Eq. (2), and the abscissa of its image point~'(Y)through Eq. (14) is effected by means of 
the function 

sin1/2= 1 (ztv -- q%)-- sin 1/2~ 1 (~V + q)l) -- 
2 2 

x(qo~)= sin l/2c~ 1 ~ J~131v--r176 1 (~v@q~)  (16)  
2 2 

while the correspondence between the abscissa u of a point of the half-open interval (NR) and 
the ordinate y of its image (15) is given by the function 

{_~__ Jl%' JI 
u cos - -  - -  R cos ...... (v + 2~ )  

I 2 2 " 

y ( u ) = t g  arctg usin ~v 
2 §  ( ~ + 2 ~ )  

2 

(17)  

The formulas (16) and (17) follow from the relations (10), (ii), and (12). The derivative 
of the mapping function is given by 

~ / I ~ - ~ w - C  V ~-I w - - B  ~ + e  c~ 
y ' ( w )  = R sin = �9 (18)  

o~ 2 [ w - - C  w - - C  w - - B  

We obtain the inverse mapping w =f-1(z), starting from the relations (i0), (ll), and 
(12), in the form 

y - ~  (z) = w (~)o~ (z), ( i 9 )  

where 

w (4) = C ~ + ei"(v+2=) 
+ e-i~v ' (20)  

- -  (21) 
(z) = 1 - -  z 
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From this we obtain the modulus of its derivative on the intervals ~-(y) (see Eq. (14)) and 
~- ((NR)) (seeEq. (15)): 

[ y - l "  (x)l = 8aRs in  a[~ (1 --x~) 2~-I 
2 

X 

(22)  

• [(1 + x) 4~ -~- 2 cos a~ (1 -- x~) z~ -~ (1 - -  X)4~] -1, X E o~- ( '~) i  

'Y-" (iY)[= 2czRsin all [ ( 2 ) l - '  2 (1 § y=) cos ~ - -  q- 2= arctg y . (23)  

The e o r r e s p o n d e n c e  b e t w e e n  t h e  a n g u l a r  c o o r d i n a t e  0,  d e f i n i n g  a p o i n t  o f  t h e  a r c  ~r'(F) ( s e e  
Eq. ( 1 3 ) ) ,  and t h e  a n g u l a r  c o o r d i n a t e  ~0 o f  i t s  p r e i m a g e  on  F ( s e e  Eq.  ( 3 ) )  h a s  t h e  fo rm  

sin2 ~ 0 0 
_ _  COS 2~ 

a[~ 2 2 
( p ( O ) = 2 a r c t g  tg 4 sin2~ 0 +cos2~  0 

2 2 

We establish this as follows. Putting z = e i0 into Eq. (21) in accordance with Eq. 
we find 

(13), 

(24) 

substituting w = Re i~ into Eq. 
we obtain 

o e *~ = z E Y ( r ) ;  ~ ( z )  = e ~ c t g  zu 2 ' 
(25)  

(20) in accordance with Eq. (3), and also the relation (25), 

e ~ : 

e c t g  2= + 1 

-i a~ 

ctg2~ 0 ,-+-e 2 
2 

multiplying numerator and denominator by the conjugate of the denominator and calculating 
the argument of both sides of the equation, we obtain the relation (24). 

3. It is not difficult to see that the function ~z(Z)=~(~--L(z)) satisfies the con- 
ditions of the problem: 

A~z(Z)= 0, zC~(g), (26) 

~z(z) = 0, zE~-(int?), (27) 

~z(Z)=h(q)(O)), e i ~  (28) 

where ~(~) is given by the expression (24), and where~-(y) and ~-(F) are, respectively, the 
semicircle and diameter of the semicircle~-(g). We obtain the solution of the problem (26)- 
(128) with the aid of the method of separation of variables: 

~)~(z )  = ~appPsinpO, Pe ~~ = zC ,~'(g),  ( 2 9 )  
p = l  

where the coefficients ap are calculated from the formula 

a ~ =  .2 [h((p(0))sinp0d0.  
a ~ ( 3 0 )  
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Substituting z =~(w) into Eq. (29) and noting that pP sin p0 = Im zP, we obtain the solution 
of the problem (6)-(8) in the form of the series 

~(w )  -- '%'~ ap Im [Y (w)]~; (31)  
p=l. 

with the help of [i] we can show that this series converges in gUinty; wherein it can be 
differentiated an arbitrary number of times. We obtain an expression for the gradient of 
the solution ~(w) from Eq. (31) through use of the equation grad [Im f(w)] = if'(w), valid 
for an arbitrary analytic function f(w): 

grad ~ (w) .... i-S.' (w) ~ pa2) ~_. [a ~ (w)] p- l ,  w E g U int ?. 
p=1 

(32) 

We note that grad ~(N) = ia~' (N). 

Equation (31) for w e (NR) and expression (32) for w ~ (NR) and w ~ inty can be put into 
a more suitable form. Taking into consideration, in accordance with Eq. (15), that ~-(u) = 
iy(u), u E (NR), we transform Eq. (31): 

$(u) == 2 az; -1 (--1)"+l [g(u)12"-l' u = w E ( N R ) ,  
p=[ 

(33) 

where y(u) is given by the function (17). Noting that the normal v (w) to the arc y is deter- 
mined, in accordance with Eq. (2), by the expression 

v (w) = e Z~', O~ + "qe i~~ = w E ?, 

and taking into account the relation 
(32) the expression 

y ' ( w )  - /Y  - ~ '  (x)!-~, ~ -~ (x) = w E ~, 
i 

,~ (w) 
we deduce from Eq. 

(w) 
grad ~ (w) .~j = pav [x (~1)] p-l, int ?, 

IY -~" (x(q~O)l ~=~ 
(34) 

where I f  - l '  (x)l is determined from Eq. (22) and x(q%) is determined from Eq. (16). Sub- 
stituting ~(u) = iy(u), u C (NR) into Eq. (32) and using the equation f'(u) == i If -~ (@(e))[-i, 
tt ~ (NR), we obtain 

where lY'-1"(iy) l 
relations (23), 

grad ~ (u) = 
lY -~" (iy (u))l 

{ ~ ( - - 1 )  p-1 (2p--  1)a~p_l [9(u)] 2u'-1) + 
p = l  

-.i- i ~ ( - -1)"2pa2v[t l (u)]  2p-1} , u = w E ( N R ) ,  
p-- |  

(35) 

is determined from Eq. (23), andy(u) from Eq. (17). 
(24), and (35) we obtain the gradient at the point N: 

grad ~ (N) 1 § cos av 

2artR sin ~ff 
2 

With the help of the 

X 
i COS2 = 

h 2arc tg  tg ~[~ 2 2 
0 + cos2C~ 0 sin OdO. 

i~ 4 sin2~ 2 ' 2 

(36) 
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4. Numerical calculations make it possible to obtain the solution for various values 
of the initial parameters R, ~, a and for various forms of the function h(~). Our numerical 
results are shown in Fig. 2 for the case in which R = /3, 6 = 5/3, ~ = 1/2, h(~) = 3 ~ 
cos(0.6 ~); the heavily drawn curve exhibits (partially) the boundary of the domain g; curve 
b shows the value of Igrad~(w) I on the arc y (its values are laid off along the normal to the 
curve u curve a is the graph of the function ~(w) on the segment (NR). 

5. Restrictions on the parameters B and a, adopted in Section i, were for the sake of 
convenience. Our results, with small changes, can be carried over to arbitrary 6 ~ (0, 2), 
a~(-~, ~); in the main, our results also carry over to the case of an arbitrary nonunivalent 
circular lune. We note that for -2 < a < 0 the domain g(R, 6, a) is complementary to the 
closure of the domain g(R, ~, 2 + a) with respect to the extended complex plane. 

Let the domain g = g(R, 6, a) and the parameters R, 6, a satisfy the conditions of Sec. 
i, and let the transformation w = f(w) and the quantities R, g, ~ be given by the expressions 

= = } = n (R,  p, 

[(~) = ~ - - 0 t ( R ,  ~, g), (37) 

where the function O~(R, B, ~) is obtained from Eq. (i) by affixing the tilde sign to the 
corresponding symbols. We then denote the crescent-shaped domain defined by the parameters 
R, 6, ~ by g, and its bounding arcs by ~ and ~. It is not difficult to see that g = f(g), 

F = f(y) and y = f(P); therefore the solution of the problem 

At~l (w)=O,  wCg,  (38)  

~ ( m )  = O, wCin tF ,  (39)  

1~1 ([o.)) - hi (w), [~)~ '~, h~EL2(?), (40)  

is reduced with the aid of the transformation (37) to the problem (6)-(8) considered above, 
with g, ~(w), h(r replaced, respectively, by g, ~iw) = ~(f(~)), h(~) = ht(f~ei~)) �9 
Consequently, we can also find a solution of the Dirichlet problem in the crescent-shaped 
domain g with an arbitrary L2(3g) function on its boundary since it is obviously equal to 
the sum of the solutionsof the problems (6)-(8) and (38)-(40). 

6. We can reduce the problem of the torsion of a prismatic rod with cross section in 
the form of the domain g (see [2-5]) to a particular case of the problem (6)-(8); moreover, 
the function h(~) in the condition (8) has the form 

h((p) @ ( I R e  ~ 01l~--rl~) - -R  ~ sinar~ ( [5~) -- --  - -  cosq)--cos . . (41) 
sin w 2 

The maximum stress Tma x is reached at the point N; it is connected with grad ~(N) by means 
of the relationship 

Tma x = O~ [-- ~ @ grad ~ (N)I. (42) 

where G is the shear modulus of the rod material and ~ is the angle of torsion of the rod 
per unit length. Using the relations (36), (41), (42), we obtain a formula for Tmax: 

Tmax 
{ (1 + . . . .  cosw)sin~rc ~( [ [~a] } = G ~  --1 + •  cos~p(0)-- cos sin0d0 

an sin 2 13n o 2 ' 
2 

where ~(0) is given by expression (24). 

The torsion problem for a rod of this type was solved in [2, 3]. Particular cases of 
this problem were considered in other publications: the case ~ = I/2in[4]; a = B/4 in [5]; 

= 1/2, B = 1/2 and ~ = 1/2, 6 = i in [6]~ ~ = l/n, where n = 2, 3, ..., in [7]. 
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NOTATION 

w, z, ~, complex variables; i, imaginary unit; w = u + iv = re i~, where u, v and r, ~, 
respectively, are systemsof Cartesianand polarcoordinates over the plane w; z = x + iy = 
pe i~, where x, y and p, @, respectively, are systems of Cartesian and polar coordinates over 

a~ a2 d~ 92 
the plane z; grad, gradient; A, Laplace operator: A-- au 2 ~ av2 or A 0x~ -~ ay2 ; 

flof2, superposition of functions f1(f2); int y, arc y without end points; ~g, boundary of 
the domain g; a, number, complex conjugate to a; Re a and Im a, realand imaginary parts of 
the number a, respectively; L2(/), space of functions summable with a square at intercept 
I. 
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